
5/19/2021 Cloud SQL for MySQL disaster recovery: A complete failover and fallback process

https://cloud.google.com/solutions/cloud-sql-mysql-disaster-recovery-complete-failover-fallback?authuser=0 1/16

Note: This document or section includes references to one or more terms that Google considers

disrespectful or offensive. The terms are used because they are keywords in the software that's described in

the document.

This tutorial describes a complete disaster recovery (DR) failover and fallback process in Cloud
SQL for MySQL (https://cloud.google.com/sql/docs/mysql?authuser=0) by using cross-region read
replicas (https://cloud.google.com/sql/docs/mysql/replication/cross-region-replicas?authuser=0).

In this tutorial, you set up a high availability (HA) Cloud SQL for MySQL instance for DR and
simulate an outage. Then you step through the DR process to recover your initial deployment
after the outage is resolved.

This tutorial is intended for database architects, administrators, and engineers.

To read an overview of how SQL disaster recovery works, see Introduction to Cloud SQL
disaster recovery (https://cloud.google.com/architecture/intro-to-cloud-sql-disaster-recovery?authuser=0)

.

Objectives

Create an HA Cloud SQL for MySQL instance.

Deploy a cross-region read replica on Google Cloud using Cloud SQL for MySQL.

Simulate a disaster and failover with Cloud SQL for MySQL.

Understand the steps to recover your initial deployment by using a fallback with Cloud
SQL for MySQL.

This document focuses only on cross-region DR failover and fallback processes. For
information about a single-region HA failover process, see Overview of the high availability
con�guration (https://cloud.google.com/sql/docs/mysql/high-availability?authuser=0).

Cloud SQL for MySQL disaster recovery: A
complete failover and fallback process

https://cloud.google.com/sql/docs/mysql?authuser=0
https://cloud.google.com/sql/docs/mysql/replication/cross-region-replicas?authuser=0
https://cloud.google.com/architecture/intro-to-cloud-sql-disaster-recovery?authuser=0
https://cloud.google.com/sql/docs/mysql/high-availability?authuser=0

5/19/2021 Cloud SQL for MySQL disaster recovery: A complete failover and fallback process

https://cloud.google.com/solutions/cloud-sql-mysql-disaster-recovery-complete-failover-fallback?authuser=0 2/16

Costs

This tutorial uses the following billable components of Google Cloud:

Cloud SQL (https://cloud.google.com/sql/pricing?authuser=0)

To generate a cost estimate based on your projected usage, use the pricing calculator
 (https://cloud.google.com/products/calculator?authuser=0).

When you �nish this tutorial, you can avoid continued billing by deleting the resources you
created. For more information, see Cleaning up (#clean-up).

Before you begin

1. In the Google Cloud Console, on the project selector page, select or create a Google
Cloud project.

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead

of selecting an existing project. After you �nish these steps, you can delete the project, removing all

resources associated with the project.

Go to project selector (https://console.cloud.google.com/projectselector2/home/dashboard?authuse

2. Make sure that billing is enabled for your Cloud project. Learn how to con�rm that billing
is enabled for your project
 (https://cloud.google.com/billing/docs/how-to/modify-project?authuser=0).

3. In the Cloud Console, activate Cloud Shell.

Activate Cloud Shell (https://console.cloud.google.com/?cloudshell=true&authuser=0)

Phase 1: Se�ing up an HA database instance for DR

The following phases (1-3) guide you through a complete failover and fallback process. You
run all the commands by using the gcloud command in Cloud Shell. To simplify the process,

https://cloud.google.com/sql/pricing?authuser=0
https://cloud.google.com/products/calculator?authuser=0
https://console.cloud.google.com/projectselector2/home/dashboard?authuser=0
https://cloud.google.com/billing/docs/how-to/modify-project?authuser=0
https://console.cloud.google.com/?cloudshell=true&authuser=0

5/19/2021 Cloud SQL for MySQL disaster recovery: A complete failover and fallback process

https://cloud.google.com/solutions/cloud-sql-mysql-disaster-recovery-complete-failover-fallback?authuser=0 3/16

the tutorial uses default settings when possible (for example, the default Cloud SQL version).
In your production environment, you might add other con�gurations.

Set environment variables

This section provides examples of environment variables that de�ne the various names and
regions that are required for the commands that you run in this tutorial. You can adjust these
example variables to �t your needs.

The following tables describe instance names, their roles, and their deployment regions for
each phase of the DR and fallback process in this tutorial. You can also provide your own
names and regions.

Initial phase

Instance name Role Region

instance-1 Primary us-west1

instance-2 Standby us-west1

instance-3 Cross-region read replica us-west2

Disaster phase

Instance name Role Region

instance-3 Primary us-west2

instance-4 Standby us-west2

instance-5 Cross-region read replica us-west3

instance-6 Cross-region read replica us-west1

Fallback (�nal) phase

Instance name Role Region

instance-6 Primary us-west1

instance-7 Standby us-west1

5/19/2021 Cloud SQL for MySQL disaster recovery: A complete failover and fallback process

https://cloud.google.com/solutions/cloud-sql-mysql-disaster-recovery-complete-failover-fallback?authuser=0 4/16

Fallback (�nal) phase

instance-8 Cross-region read replica us-west2

The instance names in the preceding tables aren't encoded with their roles. In a DR situation,
the function of an instance might change—for example, a replica might become the primary. If
the name of the new primary contains the word replica, confusion and con�icts might arise.
Therefore, we recommend not encoding instance names with the function or role that they
perform.

The preceding tables list the names of standby instances. Even though this tutorial doesn't
exercise an HA failover, the tutorial includes the names of standby instances for
completeness.

The fallback phase recreates the original deployment of the initial phase in the same original
regions. However, in a fallback, the names of the instances must change because the original
names aren't immediately available even after the original instance is deleted. To support the
speedy creation of instances in the fallback phase, you should use instance names that don't
match the names used in the initial phase.

In Cloud Shell, set environment variables that are based on the speci�cations in the
preceding tables:

If you want to use a different tier for your primary instance, list the tiers that are available
to you, and then assign a different value to the primary_tier:

export primary_name=instance-1

export primary_tier=db-n1-standard-2

export primary_region=us-west1

export primary_root_password=my-root-password

export primary_backup_start_time=22:00

export cross_region_replica_name=instance-3

export cross_region_replica_region=us-west2

gcloud sql tiers list

5/19/2021 Cloud SQL for MySQL disaster recovery: A complete failover and fallback process

https://cloud.google.com/solutions/cloud-sql-mysql-disaster-recovery-complete-failover-fallback?authuser=0 5/16

For a list of regions where you can deploy Cloud SQL, see Instance settings
 (https://cloud.google.com/sql/docs/mysql/instance-settings?authuser=0#region-values).

Create a primary database instance

1. In Cloud Shell, create a single instance
 (https://cloud.google.com/sql/docs/mysql/create-instance?authuser=0) of Cloud SQL:

The gcloud command pauses until the instance is created.

2. Set the root password:

Create a primary database

1. In Cloud Shell, log in to the MySQL shell and enter the root password at the prompt:

2. At the MySQL prompt, create a database and upload test data
 (https://cloud.google.com/sql/docs/mysql/quickstart?
authuser=0#create_a_database_and_upload_data)

:

gcloud sql instances create $primary_name \

 --tier=$primary_tier \

 --region=$primary_region

gcloud sql users set-password root \

 --host=% \

 --instance $primary_name \

 --password $primary_root_password

gcloud sql connect $primary_name --user=root

CREATE DATABASE guestbook;

USE guestbook;

https://cloud.google.com/sql/docs/mysql/instance-settings?authuser=0#region-values
https://cloud.google.com/sql/docs/mysql/create-instance?authuser=0
https://cloud.google.com/sql/docs/mysql/quickstart?authuser=0#create_a_database_and_upload_data

5/19/2021 Cloud SQL for MySQL disaster recovery: A complete failover and fallback process

https://cloud.google.com/solutions/cloud-sql-mysql-disaster-recovery-complete-failover-fallback?authuser=0 6/16

3. Check that the data was successfully committed:

Verify that two rows of data are returned.

4. Exit the MySQL shell:

At this point, you have a single database that includes a table and some test data.

Change the primary instance to an HA database instance

You can only con�gure Cloud SQL as a regional HA system, not as a cross-regional system.
(Setting up a cross-region read replica is different than con�guring Cloud SQL as a cross-
regional system.) For more information, see Enabling and disabling high availability on an
instance (https://cloud.google.com/sql/docs/mysql/con�gure-ha?authuser=0).

In Cloud Shell, create an HA-enabled Cloud SQL instance:

Add a cross-region read replica for DR with automatic update

CREATE TABLE entries (guestName VARCHAR(255), content VARCHAR(255), entryID

INSERT INTO entries (guestName, content) values ("first guest", "I got here

INSERT INTO entries (guestName, content) values ("second guest", "Me too!")

SELECT * FROM entries;

exit;

gcloud sql instances patch $primary_name \

 --availability-type REGIONAL \

 --enable-bin-log \

 --backup-start-time=$primary_backup_start_time

https://cloud.google.com/sql/docs/mysql/configure-ha?authuser=0

5/19/2021 Cloud SQL for MySQL disaster recovery: A complete failover and fallback process

https://cloud.google.com/solutions/cloud-sql-mysql-disaster-recovery-complete-failover-fallback?authuser=0 7/16

The following steps are su�cient to create a cross-region read replica for this tutorial:

1. In Cloud Shell, set up a cross-region read replica:

2. (Optional) To check that the database was replicated, in the Cloud Console, go to the
Cloud SQL Instances page.

Go to Instances (https://console.cloud.google.com/sql/instances?authuser=0)

The Cloud Console shows that the primary instance (instance-1) is enabled for HA and
that a cross-region read replica (instance-3) exists.

3. Using the same root password for the primary, log in to the cross-region read replica:

4. At the MySQL prompt, select the data to ensure that replication is working:

5. Exit the MySQL shell:

gcloud sql instances create $cross_region_replica_name \

 --master-instance-name=$primary_name \

 --region=$cross_region_replica_region

gcloud sql connect $cross_region_replica_name --user=root

USE guestbook;

SELECT * FROM entries;

exit;

https://console.cloud.google.com/sql/instances?authuser=0

5/19/2021 Cloud SQL for MySQL disaster recovery: A complete failover and fallback process

https://cloud.google.com/solutions/cloud-sql-mysql-disaster-recovery-complete-failover-fallback?authuser=0 8/16

For details on how to set up a full cross-region read replica, see the Cloud SQL documentation
 (https://cloud.google.com/sql/docs/mysql/replication/create-replica?authuser=0)

For large databases in a production environment, we recommend that you back up the primary
database and create the cross-region read replica from the backup. This step helps reduce the
time it takes for the read replica to synchronize with the primary database. This process is
described in the next section. However, you can choose to skip this step and continue with
Phase 2 (#phase-2).

Add a cross-region read replica based on a dump �le

One way to optimize the creation of a cross-region read replica is to synchronize the replica
from an earlier, consistent primary database state instead of synchronizing at the point of
accessing the new primary. This optimization requires creating a dump �le that the replica
uses as the starting state.

For the steps to create a replica based on a dump �le, see Replicating from an external server
to Cloud SQL (v1.1)
 (https://cloud.google.com/sql/docs/mysql/replication/replication-from-external?authuser=0#online-+-
managed-dump)

. This approach can be helpful for large production databases. However, this tutorial skips this
step because the test dataset is small enough for a complete replication.

Phase 2: Simulating a disaster (region outage)

In this phase, you will simulate the outage of a primary region in a production setting by
making the primary database unavailable.

Check for cross-region read replica lag

In the following steps, you determine the replication lag of the cross-region read replica:

1. In the Cloud Console, go to the Cloud SQL Instances page.

Go to Instances (https://console.cloud.google.com/sql/instances?authuser=0)

2. Click the read replica (instance-3).

https://cloud.google.com/sql/docs/mysql/replication/create-replica?authuser=0
https://cloud.google.com/sql/docs/mysql/replication/replication-from-external?authuser=0#online-+-managed-dump
https://console.cloud.google.com/sql/instances?authuser=0

5/19/2021 Cloud SQL for MySQL disaster recovery: A complete failover and fallback process

https://cloud.google.com/solutions/cloud-sql-mysql-disaster-recovery-complete-failover-fallback?authuser=0 9/16

3. In the metrics drop-down list, click Replication Lag:

The metric changes to Replication Lag. The graph shows no delay:

5/19/2021 Cloud SQL for MySQL disaster recovery: A complete failover and fallback process

https://cloud.google.com/solutions/cloud-sql-mysql-disaster-recovery-complete-failover-fallback?authuser=0 10/16

Ideally, the replication lag is zero when a primary region outage occurs, as a delay of zero
ensures that all transactions are replicated. If it's not zero, some transactions might not be
replicated. In this case, the cross-region read replica won't contain all the transactions that
were committed on the primary.

Make the primary instance unavailable

In the following steps, you simulate a disaster by stopping the primary. If a cross-region read
replica is attached to the primary, you must �rst detach the replica, otherwise you can't stop
the Cloud SQL instance.

1. In Cloud Shell, remove the cross-region read replica from the primary:

When you're prompted, accept the option to continue.

2. Stop the primary database instance:

gcloud sql instances patch $cross_region_replica_name \

 --no-enable-database-replication

5/19/2021 Cloud SQL for MySQL disaster recovery: A complete failover and fallback process

https://cloud.google.com/solutions/cloud-sql-mysql-disaster-recovery-complete-failover-fallback?authuser=0 11/16

Implement DR

1. In Cloud Shell, promote the cross-region read replica to a standalone instance:

When you're prompted, accept the option to continue. The Cloud SQL Instances page
shows the former cross-region read replica (instance-3) as the new primary, and the
former primary (instance-1) as stopped:

After you promote the cross-region read replica as the new primary, you enable it for HA.
As a best practice, you should update the environment variables with proper naming.

2. Update the environment variables:

3. Start the new primary:

gcloud sql instances patch $primary_name --activation-policy NEVER

gcloud sql instances promote-replica $cross_region_replica_name

export former_primary_name=$primary_name

export primary_name=$cross_region_replica_name

export primary_tier=db-n1-standard-2

export primary_region=$cross_region_replica_region

export primary_root_password=my-root-password

export primary_backup_start_time=22:00

export cross_region_replica_name=instance-5

export cross_region_replica_region=us-west3

gcloud sql instances patch $primary_name --activation-policy ALWAYS

5/19/2021 Cloud SQL for MySQL disaster recovery: A complete failover and fallback process

https://cloud.google.com/solutions/cloud-sql-mysql-disaster-recovery-complete-failover-fallback?authuser=0 12/16

4. Enable the new primary as an HA regional instance:

5. Create a cross-region read replica in a third region:

In an earlier step, you set the cross_region_replica_region environment variable to
us-west3.

After the failover completes, the Cloud SQL Instances page in the Cloud Console shows
that the new primary (instance-3) is enabled as HA and has a cross-region read replica
(instance-5):

�. (Optional) If you have regular backups, follow the process described earlier
 (#add-replica-dump) to synchronize the new primary with the latest backup version.

7. (Optional) If you're using a Cloud SQL proxy, con�gure the proxy
 (https://cloud.google.com/sql/docs/mysql/connect-admin-proxy?authuser=0) to use the new
primary in order to resume the application processing.

Handle a sho�-lived region outage

gcloud sql instances patch $primary_name \

 --availability-type REGIONAL \

 --enable-bin-log \

 --backup-start-time=$backup_start_time

gcloud sql instances create $cross_region_replica_name \

 --master-instance-name=$primary_name \

 --region=$cross_region_replica_region

https://cloud.google.com/sql/docs/mysql/connect-admin-proxy?authuser=0

5/19/2021 Cloud SQL for MySQL disaster recovery: A complete failover and fallback process

https://cloud.google.com/solutions/cloud-sql-mysql-disaster-recovery-complete-failover-fallback?authuser=0 13/16

It's possible that the outage that triggers a failover is resolved before the failover completes. In
this case, it might make sense to cancel the failover process and continue using the original
primary Cloud SQL instance in the region where the outage occurred.

Depending on the speci�c state of the failover process, the cross-region read replica might
have been promoted already. In this case, you must delete it and re-create a cross-region read
replica.

Delete the original primary to avoid a split-brain situation

To avoid a split-brain situation, you need to delete the original primary (or make it inaccessible
to database clients).

After a failover, a split-brain situation can occur when clients write to the original primary
database and the new primary database at the same time. In this case, the content of the two
databases is inconsistent. After a failover, the original primary database is outdated and must
not receive any read or write tra�c.

In Cloud Shell, delete the original primary:

When you're prompted, accept the option to continue.

In the Cloud Console, the Cloud SQL Instances page no longer shows the original primary
instance (instance-1) as part of the deployment:

Phase 3: Implementing a fallback

gcloud sql instances delete $former_primary_name

5/19/2021 Cloud SQL for MySQL disaster recovery: A complete failover and fallback process

https://cloud.google.com/solutions/cloud-sql-mysql-disaster-recovery-complete-failover-fallback?authuser=0 14/16

To implement a fallback to your original region (R1) after it becomes available, you follow the
same process that is described in Phase 2. That process is summarized as follows:

1. Create a second cross-region read replica in the original region (R1). At this point, the
primary has two cross-region read replicas, one in region R3, and one in region R1.

2. Promote the cross-region read replica in R1 as the �nal primary.

3. Enable HA for the �nal primary.

4. Create a cross-region read replica of the �nal primary in us-west2.

5. To avoid a split-brain situation, delete all instances that are no longer required (the
original primary and the cross-region read replica in R3).

As discussed earlier, it's a best practice to create an initial backup that contains the de�ned
start state for the new primary database.

The �nal deployment now has an HA primary (with the name instance-6) and a cross-region
read replica (with the name instance-8).

Comparing advantages and disadvantages of a manual versus
automatic DR

The following table discusses the advantages and disadvantages of implementing a DR
process either manually or automatically. The goal isn't to determine a correct versus incorrect
approach but to provide criteria to help you determine the best approach for your needs.

Manual execution Automatic execution

Advantages:

You have tight control over every step.

You can immediately see, address, and
document any issue in the process.

You can see and review every process step
during a failover.

Advantages:

You can implement and test failover processes.

Automation offers the quickest implementation and
minimizes delays.

Implementation is independent of human operators, their
knowledge, and their availability.

5/19/2021 Cloud SQL for MySQL disaster recovery: A complete failover and fallback process

https://cloud.google.com/solutions/cloud-sql-mysql-disaster-recovery-complete-failover-fallback?authuser=0 15/16

Manual execution Automatic execution

Disadvantages:

Manually implementing process steps
slows down the process.

Human typing errors can introduce issues.

Testing the process typically involves
several roles and time, which might
discourage regular testing.

Disadvantages:

If an unforeseen error occurs, you have to debug during
your production failover.

If you encounter errors during the process, you need
scripts to pick up (recover) where the process left off.

Su�cient knowledge of the script and its implementation
is required to understand the script's behavior, especially
in error situations.

As a best practice, we recommend that you start with a manual implementation. Then,
voluntarily run the implementation regularly (preferably in production) to ensure that the
manual process works and that all team members know their roles and responsibilities. We
recommend that you de�ne your manual process in a step-by-step process document. After
every implementation, you should con�rm or re�ne the process document.

After you �ne-tune the process and are con�dent that it's reliable, you then determine whether
to automate the process. If you select and implement an automated process, you need to test
the process regularly in production to ensure that you can implement it reliably.

Cleaning up

To avoid incurring charges to your Google Cloud account for the resources used in this tutorial,
you can delete the Cloud project that you created for this tutorial.

Delete the project

Caution: Deleting a project has the following effects:

Everything in the project is deleted. If you used an existing project for this tutorial, when you

delete it, you also delete any other work you've done in the project.

Custom project IDs are lost. When you created this project, you might have created a custom

project ID that you want to use in the future. To preserve the URLs that use the project ID, such

5/19/2021 Cloud SQL for MySQL disaster recovery: A complete failover and fallback process

https://cloud.google.com/solutions/cloud-sql-mysql-disaster-recovery-complete-failover-fallback?authuser=0 16/16

as an appspot.com URL, delete selected resources inside the project instead of deleting the

whole project.

If you plan to explore multiple tutorials and quickstarts, reusing projects can help you avoid exceeding

project quota limits.

1. In the Cloud Console, go to the Manage resources page.

Go to Manage resources (https://console.cloud.google.com/iam-admin/projects?authuser=0)

2. In the project list, select the project that you want to delete, and then click Delete.

3. In the dialog, type the project ID, and then click Shut down to delete the project.

What's next

Read about Cloud SQL disaster recovery
 (https://cloud.google.com/architecture/intro-to-cloud-sql-disaster-recovery?authuser=0).

Read about disaster recovery for MySQL on Compute Engine
 (https://cloud.google.com/blog/products/databases/disaster-recovery-for-mysql?authuser=0).

Learn about disaster recovery architectures for cloud infrastructure outages
 (https://cloud.google.com/solutions/disaster-recovery/architecture?authuser=0).

Explore reference architectures, diagrams, tutorials, and best practices about Google
Cloud. Take a look at our Cloud Architecture Center
 (https://cloud.google.com/architecture?authuser=0).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see the Google Developers Site Policies
 (https://developers.google.com/site-policies?authuser=0). Java is a registered trademark of Oracle and/or its
a�liates.

Last updated 2021-05-17 UTC.

https://console.cloud.google.com/iam-admin/projects?authuser=0
https://cloud.google.com/architecture/intro-to-cloud-sql-disaster-recovery?authuser=0
https://cloud.google.com/blog/products/databases/disaster-recovery-for-mysql?authuser=0
https://cloud.google.com/solutions/disaster-recovery/architecture?authuser=0
https://cloud.google.com/architecture?authuser=0
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/site-policies?authuser=0

